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Abstract—We study the competing goals of utility and privacy | Utility Domain }
as they arise when a provider delegates the processing of its ! determined by: good inference:,
personal information to a recipient who is better able to harnlle | _ s I~ |
this data. We formulate our goals in terms of the inferences Wwich | X = (D) () H(X|M)~0 }

| !

can be drawn using the shared data. A whitelist describes the f \Xj
inferences that are desirable, i.e., providing utility. A Hacklist N I -
describes the unwanted inferences which the provider wanto .7 VD RN .7 AN
keep private. We formally define utility and privacy parameters / \p(‘” | ‘)/\ s sends /" Recipient |
using elementary information-theoretic notions and derie a 4‘: D MM L M ecipient
bound on the region spanned by these parameters. We provide ~.] Provider -7 N L
constructive schemes for achieving certain boundary poirgt of ___ | R Te----7T
this region. Finally, we improve the region by sharing data eer | L ~fy\< J |
aggregated time slots. ' determined by: \__/ bad inference: !
|. INTRODUCTION . Y =g(D) I(M;Y)=~0 |
| |
| |

In a wide variety of applications, data is often shared from '._________ Privacy Domain

one entity to another: an information provider delegates tiig, 1: The provider senses an RY and wants to send a messabjto the
processing of its personal information to a recipient who fscipient, so that recipient can estimate = f(D) from M without being
better able to handle this data. While the provider gengraflle s esials, 2 s(h). 1 1, o and b ceuiuton of ae e, the
benefits from the information processing performed by the
recipient, the shared data may also be used to draw infesenigéerence problem. Elementary tools from information ttyeo
that are unwanted from the stance of the provider for privaé@n be used to effectively capture how much the recipient
reasons. For examp|e’ the provider can be a Smartphone VEER infer from the shared data. Our investigation followes th
access to the current activity and whereabouts of its user. Tapproaches developed in [6], [7] for databases and [8] fioe-ti
recipient can then be an untrusted app which (based on mies data. We differ from the above works in several key
current user context, i.e., activity and whereabouts),diey components. Our scheme does not depend on the existence of
incoming call decides whether the phone should ring, vébra multi-user database, the identity of the provider is tgyc
or remain silent. Specifically, as shown in Fig. 1 (notatiokhown, and what the provider wishes to keep private is a
explained in detail later), for given dafawe consider that the function of the data and not the raw data itself.
provider specifies avhitelist of utility-providing inferences, ~ Specifically, our contributions are as follows. In Sectitn |
denoted byX, and ablacklist of unwanted inferencey” Wwe present our system model, introduce formal definitions of
that she would like to keep private. In the above exampleur utility and privacy parameters, and derive a theorktica
X would be the suitable ringing behavior, aiidthe user's bound on the region described by the achievable values of
current location. We focus on strategies to derive messdfjgse parameters. In Section I, we outline our strategy fo
M under specified utility and privacy constraints (how mucfchieving maximum privacy under perfect utility, followbsl
information M/ gives aboutX andY). Section IV in which we derive conditions for achieving max-
Research on privacy has recently attracted a lot of attientiémum utility under perfect privacy. In Section V, we conside
Mechanisms following differential privacy have been used sharing data over multiple time slots to better approach the
protect membership information within a database by adéeoretical bound. We conclude in Section VI.
quately perturbing the aggregate query responses [1]eDiff
entially private aggregation of data from multiple distried
sources is presented in [2]. In [3], the authors introduce
the notion of partial information hiding and increase the In our model (see Fig.1), a data provider senses a discrete
uncertainty of individual values by perturbing them. Thizef RV D. The provider cooperates with the recipient by sharing
of added noise can often be eliminated by averaging amdormation about the whitelist, as specified by the RV=
other sophisticated filtering techniques [2], [4]. A profm¢  f(D) (e.g.,X can be mute, ring, or vibrate). The provider also
implementation of a privacy-aware framework on an Androidants to keep the blacklist, specified By= g(D) (e.g.,Y
smartphone is provided in [5]. Inspired by the work in [5]can be work, home, theater, etc.) private. We consikieand
we consider an information-theoretic analysis of the urtedn Y to be deterministic functions ab. In this work, we focus

Il. PRELIMINARIES
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on provider strategies for generating messddefrom D, the achievable pairf®;;,0p)? In this case, we consider that

represented by the distributigif /| D), such that the desired X andY are fixed, and we want to find RV&/ that achieve

tradeoff between utility §/ gives a lot of information about good tradeoffs betweefy, andép. We denote the respective

X) and privacy (/ provides no information about) can be alphabets ofD, X, Y and M by D, X, Y and M. While

achieved. the former three alphabets are fixed by the problem setup, we
Formally, for a given choice of distributiop(M|D) of have the choice of the alphah#t of M.

messagelM knowing dataD, we define a utility parameter To answer the posed question, we first definentaimum

du (M) and a privacy parametép (M) as: privacy under perfect utilitynax P andmaximum utility under
S (M) 2 H(X|M) () 2 I(M;Y) perfect privacymax U poin?;rfby
U T OHX) P THY) (1) perfP
max P = (0,46%) whered} 2 min op(M),
When there is no ambiguity, we omit the argumaitof &, perf su (M)=0
and 6. Depending on the application, various other utility . . A ) (4)
metrics could be useful, for instance Hamming or Euclidean 12X U = (67,0) wheredy; = min oy (M).
distortions [6]. Most of our analysis directly translatesdar 6p(M)=0
any distortion metric for utility: for reasons of simpligitve In the next sections, we consider strategies to achieve the
choose to present it here under the equivocation métric ~ points max P andmax U.
These parameters expressed in terms of elementary PV perfP
information-theoretic notions conveniently capture tfaeleoff I1l. M AXIMIZING PRIVACY UNDER PEREFECTUTILITY
between utility and privacy. The smallég; (M) is, the more _ _ o _
useful M is in determiningX, and the smallepp(M) is, Using the fact thatX is a deterministic function oD, we

the more privateM is aboutY. We refer tody = 0 as the Provide a simple strategy to achienggf%P, and show that the
perfect utility case (in whichH (X[M) = 0 and therefore strategy reaches the bound from Theorem 1.

X can be perfectly inferred fromi/) and toép = 0 as the i . .
perfect privacycase (in whichI(M;Y) = 0 and therefore Leémma 1. For f'X?g(DY-)X andY, sharingM = X achieves
Y is independent from\). In general, it is not possible to max P and dp = 5.

achieve perfect utility and perfect privacy at the same time

In the following, we provide a lower bound on the achievable ~Proof: Follows directly from the definition ofy (A1) and
(6u,6p) pairs: dp(M) in (1) and the bound in Theorem 1. O

] ) Sharing M = X is not useful when the computation of
Theorem 1. Let D, X andY be fixed. For any choice of x py the recipient is the only reason the provider agrees to
conditional distributionp(M|D), the following lower bound (elease data. However, it is a valid strategy when the peovid
holds: has additional incentive to share data, or whéris only an
Su(MYH(X)+op(M)H(Y) > I(X;Y). (2) intermediate variable which requires further processinghie
For a given choice of\/, equality in (2) holds if and only if recipient.
H(X|M,Y)=I(M;Y|X) = 0.

Proof: We prove that for any three RVA/, X andY,

IV. MAXIMIZING UTILITY UNDER PERFECTPRIVACY

H(X|M) + I(M;Y) > I(X;Y), where 5y (M)H(X) = As shown in Section III,achievingm{)éPis straightforward
H(X|M)anddp(M)H(Y) = I(M;Y): as it does not depend o¥i. Howep\)/er, achievingnagP(U is
er

I(M;Y) + H(X|M) - I(X;Y) considerably more involved as it depends on bathand

=HM)+HY)-HM,Y)+ HX|M)-I(X;Y) Y. This section aims at providing necessary conditions on

= H(M,X)+H(X,Y) - HM,Y) — H(X) p(D, M) for M to achieve pointmax U. Combining these

’ ) ’ per
= H(M)+ H(X|M)+ H(X)+ H(Y|X) conditions greatly restricts the space over which distiins
3 . - :
— H(M) + H(Y|M) — H(X) (3) p(D, M) may achleveF()I;%U, in fact, it allows us to express

— H(X|M)+ H(Y|X) — H(Y|M) the maximization of utility under perfect privacy as a linea

_ H(X|M) + I(M: Y| X) + H(Y|M, X) — H(Y|M) programming problem.

=H(X|M,Y)+I(M;Y|X) > 0. A. Necessary Conditions op(D, M) for Maximum Utility
BecauseH (X|M,Y) and I(M;Y|X) are both non-negative, under Perfect Privacy
equality holds if and only if they are both zero. O

o ] . We provide three conditions. The first one is a necessary
From Theorem 1, we deduce that it is possible to achieyqq sufficient condition for perfect privacy (with no corasit

perfect utility and perfect privacy at the same time only i, yiility). It is a simple consequence of our definition of
I(X;Y) = 0 (in fact, one can observe that reciprocally, iferfect privacy, but we state it formally as it is convenitant

I(X;Y) = 0 then we can always achieve perfect utility and;r analysis. The remaining two are necessary conditions fo
perfect privacy simultaneously, e.g. by transmittilg= X). naximum utility.

A more intriguing question is, wheRA(X;Y) > 0, what are
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Condition 1. For all me M andy € ),
> pld,m) = p(m)p(y).
deg=1(y)

Lemma 2. RV M achieves perfect privacy if and only i/
meets Condition 1.

()

Proof: By definition of perfect privacy/ (M;Y) = 0 and
for all m € M andy € Y we havep(m,y) = p(m)p(y). The
statement follows by noting that

plm,y)= > p(d,m). 6)

deg=1(y) |

We now try to maximize utility when Condition 1 is
satisfied. Suppose that for eveny € M there is a unique
x € X such thatp(m,z) > 0. Then, M achieves perfect

utility. This observation leads to the intuition that utiliis
increased when each value € M jointly occurs only with

a limited number of different values aof € X. Therefore,

(so that one of they,(d;,m;) = 0). We use the following
notation shortcuts

ij A
09 A pmpa) = Y pldimy), (®)
def=1(zi)
i A
def=1(z;)

wherez; = f(d;), and decompos# (X |M,,) into a term that
depends o and a constant. We use the fact that forrall
and all z, p,(m) = p(m) and p,(x) = p(x). After some
lengthy derivations we obtain

H(X|Mq) =
—piltlogplt — pilogp? — p2tlog ! — p22 logpZ? + C.
(10)
Differentiating twice, we get
0? 1 1 1 1

starting from a given RVM that achieves perfect privacy, Thus, there exists af/,, such thatdy (M,) < dy(M).

we might be able to improve utility by performing local AlISO, pa(m,y) = > ;e -1(,) Pald,m), thus form ¢
rearrangements of the joint distributignD, M). The goal is {mi,ma} or for y # g(di) = g(d2), we havep,(m,y) =
to reduce the number of different values¥fthat can jointly p(m,y) because for these values dfand m, p.(d,m) =
occur with each value of/ while preserving perfect privacy. p(d, m). Form € {my, ma} andy = g(d1) = g(d2), we have

We identify local patterns in the joint distributiop(D, M)

no cost in terms of privacy: if for a givei/, p(D, M) shows
one of these patterns, thed does not achievmat;}g U.
per

Condition 2. Givend; # ds in D and my # mqy in M such

Pa(m,y) = Z Pa(d,m) = Z p(d, m)+a—a = p(m,y).

that can be manipulated for a guaranteed increase in uitlity

deg=1(y) deg=1(y)

(12)
Therefore,ép(M,) = ép(M) = 0, which together with
du(M,) < oy(M) contradicts the fact thail/ achieves
max U. O

that f(d1) # f(d2) and g(d1) = g(dz), there exists a pair perfP

(i,7) € {1,2}? such thatp(d;, m;) = 0.

Condition 3. For all mg € M and dy,ds € D such that

Lemma 3. If M achieveanax U, thenM meets Condition 2. g(dr) = g(da),

perfP

di # ds = p(dl,mo) =0 \/p(dg, ’I’I’LQ) =0. (13)

Proof: Suppose that/ aChie"e?;};f‘ﬂ’iU but does not meet Lemma 4. If M achieveanax U, thenM meets Condition 3.

Condition 2. Then, there exigt, d2, m; andms so that all of

the p(d;, m;) terms, (i, j) € {1,2}2, are non-zero. We show

that this leads to a contradiction by building an RY,, which
also achieves perfect privacy, but with better utility thah

perfP
Proof: Suppose thatl/ achievesmax U but does not

erfP
meet Condition 3. Then, there existo,pdl andds such that
g(dl) = g(dg) and bOthp(dl,mo) >0 andp(dg,mo) > 0.

For a real numbew in a well-chosen range, we define the\ow consider the RVM’ on alphabetM’ = M U {my}

RV M, by its joint distributionp,, (D, M):

p(d,m)+a if (d=di Am=my)
or (d =da Am =ma),
pal(d,m) =< p(d,m) —a if (d=di Am=mz) (7)
or (d=dy Am=my),
p(d, m) otherwise.

Notice that the joint distributiop,, (D, M, ) is a locally per-
turbed version op(D, M). We now consider howd (X |M,,)
varies witha. Becausep,, (d, m) must remain betweef and
1, a can only vary in some line segmeftyin, dmax)- NoOte

that the constraints that the probabilities must remain-non—_

(wherem( ¢ M is a new symbol), obtained by splitting
symbolmyg into my andmy. Formally,

, B p(d,m) if m & {mg,my},
pd,m) = {p(d7 m)/2 if m € {mg,m{}. (14)
Let us first notice thabdy (M) = §y(M):
HX)ou(M') = 3" o (m)H(X|M' = m)
meM’

=Y ptma(x(a = m) + 227 (x| = o)

meM\{mo}

H(X)6y (M). (15)

negative are sufficient to find the bounds: taking for instanc_Similarly, 6p(M") = p(M) = 0. As M’ does not satisfy

p(di,m1) + « > 1 would imply thatp(d;,ms2) — a < 0.
Therefore,amin = — min(p(dy, m1), p(da, m2)) and amax =
min(p(dz, m1), p(di, m2)).

We now prove thatd (X |M,,) is a concave function of
and therefore reaches its minimum o= ain OFr @ = Onax

Condition 2 (formg, my, di andds), by Lemma 3,M’ does
not achievemax U, and so neither doe&/. O

er

perfP
Under the assumption that Condition 1 is satisfied, Fig. 2
illustrates for a simple synthetic example Bf X andY how
better utility can be obtained once Conditions 2 and 3 are met
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M, M, M.
DXY |1 2 3 4 DXY |1 2 20 3 4 DXY |1 2 20 3 4
11 11385 11 11385 11 1 (388
2 21 888 2 21 o o 2 21 So S0
3 31 So o SN 3 3 1 $o o — 3 31 So 5o
41 283 oo 41 283 oo 41 283 oo
5 92 92 9s 00 5 92 9 0o 00 0o 5 9 9 00 00 00
6 1 3|85 (00 6 1 3|63 [elle 6 1 3|83 (0@
7 3 3 OO0 OO 0O 7 3 3 o o o0 OO0 7 3 3 OO0 OO 0O

(a) While Condition 2 is met, Condition 3 is (b) While Condition 3 is now met, Condition 2 (c) Lastly, Conditions 1-3 are met, the table is
not: we split columnm = 2 into 2 and2’, and is not. We rearrange the highlighted probabili-a candidate for maximum utility under perfect
obtain M, that violates Condition 2. ties and gain utility without losing privacy. privacy (and does in fact achieve it).

Fig. 2: lllustration of the impact of Conditions 2 and 3 on fbint distributionsp(D, M), when M already meets Condition 1. Eachrepresents a measure
of 4—19. Starting fromM,, (left panel) which does not meet Condition 3, we reddh (center panel) witldy; (M) = 6y (Ma) andép (M) = dp(Ma) =0,
where M, does not respect Condition 2. Fraif,, we reachM. (right panel) which still hagp (M.) = 0, and hasiy (M.) < éy (Mp).

M (p(m))merm With M = {1,...,|S]}). This greatly reduces
DXV])1 2 3 4 5 6 7 8 9 10 11 12 the dimensionality of the space of the candidate joint distr
1'11}a a2 a3 aa 0 0 0 0 0 0 0 0 butions formax U.
22110 0 0 0 a5 as ar as 0 0 0 0 We there%i)rﬁg formulate achievingax U as the problem of
33110 0 O 0 0 0 0 a9 ai a1 a2 perfP
41200 b 0 b b 0 0 b b O 0 finding (p(m))mem € [0, 1] which minimizes
52 2 0 0 b3 bs O 0 by bg O 0 b1 bio H(X|M) = Z p(m)H(X|M = m)v (17)
6 13|lcc 0 c3 0 ¢s 0 ¢t 0 ¢co 0 ci1 O meM
73300 & 0 e2 0 5 0 s 0 c10 0 1o (whereM is chosen so thatS(m) : m € M} = S with each

support represented exactly once), under the constrdiats t
Fig. 3: General structure of the joint distribution fad satisfying Condi- for eachd € D,

tions 1-3 (for an example choice &f andY’). For eachm € {1,...,12}, .

om o= b — ‘=, The table is thus entirely determined by the choice of the Z p(d,m) = p(d), (18)

Va|UESp(2m) = am + bm + cm for eachm € {1,...,12}. m:deS(m)

B. Linear Programming Approach for Maximum Utility undetvhich can be written in terms of the(m):

Perfect Privacy > pm)Pr(Y = g(d) = p(d). (19)
We now use Conditions 1-3 to formulate the maximization m:d€S(m)

of utility under perfect privacy as a LP problem to compute The above LP has an average-case complexity which is
p(D, M) so thatM achievesmaf)é U.

per

We start by defining thesupport of D given M = m as

the setS(m) = {d € D : p(d,m) > 0}. Condition 3 can be V. OBTAINING BETTER PARAMETERS BY USING TIME
written in terms ofS as follows:

|y
polynomial in|S|, where|S| is upper bounded b %) .

While max P always achieves the bound from Theorem 1

per

Ym e M,y € Y,|S(m)ng t(y) =1. (16) as discussed in Section Ilinaﬂ%U in general does not. We
per .
Without loss of generality, we only consider thodé’s try to reduce the gap betweegfen?f%U and the theoretical

for which no distinctm; and m, have the same support.hound by simultaneously using multiple time-slots. Rather
Otherwise,m; andm; can be merged into a single symbofnan considering three RV®, X and Y, we consider that
with no effect ondy anddp (for the same reason for whichthey are part of three i.i.d. random proceséBs), (X;) and
we could splitm, into two symbols in t_he proof of Lemma 4). (Y,). If we send a messagk/, independently at every time
We denote byS the set of all possible supports so that gjot ¢, the analysis remains the same as before. Hoping to
(16) is met. For the same instance B, X and Y as in reach better privacy and utility, we decompose the prosesse
Fig. 2, we show in Fig. 3 the structure of the candidat@to groups of7" time slots and treat each of these groups as
joint distributions formax U. Notice that for any givenn, gz whole.

Condition 1 requiresp:;]a% — b — S which in turn _FOran RVM(T) we define the utility and privacy param-
determines the conditional distribution f given M/ = m. ©ters corresponding to a group ‘bftime slots:

Also, |S| = [T,eylg ' (y)] = 3x2x2 = 12. For M (1) (1)) & H(X{|M™) (1) (1)) & I(M™; v
achieving Condyitions 1-3, we can therefore characteriee tﬁU - H(XI) F - HYP)
joint distribution p(D, M) with only |S| values (the vector (20)
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" b x vl M ) these tradeoffs form a curve that delimits a region of prtwab
5 X : ) -
P T 1115 0 S achievable pairgdy,dp). The maximum ut|I_|ty thaf[ can be _
0074 5 2 1|0 13 Points forT = 1 r(?{'i)ched under perfect privacy using a single time slot is
’ Points forT =2 ------ * __ ; i H
52 2|0 13 Points forT — 3 oo 5 o 0.5. However, WIE?)*IWO time slots, it can be reduced
max P for 7' = 1 to d;;”" = 0.468, and tod;;”" = 0.452 for three time slots. It
' appears challenging to establish whether the points inrde a
in between the theoretical bound and the heuristicallyinbth
' Provably M tradeoffs are achievable or not (except for the poinfs’, 0)
N Achievable DXY |1 2 . (T) (T)* . . s
N T 1 113 0 with 6;; 7 < 6;; 77, which are unachievable by definition).
AN 2 2 1o 13 The bound from Theorem 1 remains the same regardless
AN 5 2 2 |16 116  Of T because of the assumption that the processes are i.i.d.:
Provably @‘\ U for 71 for any T, 6% > IIEI)((XY)) = 0.274. An interesting question
Unachievable (7)) AN is to determine whethef(!’* approaches this bound when
. I o T goes to infinity. The time complexity of the method from
0 0.274 05 oy Section IV-B prohibits the computation cmﬁaf%U for T > 3,
. . perfP .
Fig. 4: Points(8, 57 for max P, max U and tradeoffs between the even for simple examples like the one shown in Fig. 4.
per per:

two, for T from 1 to 3, on an example withD| = 3. While maﬁc}P does not VI. CONCLUSION

In this work, we took the first step towards creating a
framework for protecting data against unwanted inferences
We define utility-privacy parameters based on information-
theoretic notions, which allow us to effectively capturesho
much the recipient can infer from the shared data. We identif
bounds on these parameters, and provide constructive mech-
anisms for achieving these bounds. There are multiple $acet
o ) to the problem which we intend to study, e.g., the effect of
Lemma 5. Let f and g be two (deterministic) functions, andsjde channel information and correlation between the share
(Dy), (X;) and (Y;) be three i.i.d. random processes so tha§ata samples over time. Tools from coding theory may also
for eacht, Xy = f(D;) andY; = g(D;). Then, for any RV prove valuable in designing schemes in order to achieverbett

M given by the joint distribution(D, M), consider the i.i.d. radeoff points, especially in the case of multiple timetslo
random vectorM{ over MT given by its joint distribution

with DT,

per:
change with an increase A, max U is shifted leftwards, and better tradeoff
per
points are achieved fdf' = 2,3 than forT = 1.

While M) plays the same role a8/ did before, we
include a superscript’), to indicate thatM spansT time
slots. We may omit this superscript wheli = 1. The
following lemma provides a way of obtaining RVig (") using
an RV M designed for a single time slot.
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