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Abstract—We study the competing goals of utility and privacy
as they arise when a provider delegates the processing of its
personal information to a recipient who is better able to handle
this data. We formulate our goals in terms of the inferences which
can be drawn using the shared data. A whitelist describes the
inferences that are desirable, i.e., providing utility. A blacklist
describes the unwanted inferences which the provider wantsto
keep private. We formally define utility and privacy parameters
using elementary information-theoretic notions and derive a
bound on the region spanned by these parameters. We provide
constructive schemes for achieving certain boundary points of
this region. Finally, we improve the region by sharing data over
aggregated time slots.

I. I NTRODUCTION

In a wide variety of applications, data is often shared from
one entity to another: an information provider delegates the
processing of its personal information to a recipient who is
better able to handle this data. While the provider generally
benefits from the information processing performed by the
recipient, the shared data may also be used to draw inferences
that are unwanted from the stance of the provider for privacy
reasons. For example, the provider can be a smartphone with
access to the current activity and whereabouts of its user. The
recipient can then be an untrusted app which (based on the
current user context, i.e., activity and whereabouts), forany
incoming call decides whether the phone should ring, vibrate
or remain silent. Specifically, as shown in Fig. 1 (notation
explained in detail later), for given dataD we consider that the
provider specifies awhitelist of utility-providing inferences,
denoted byX , and a blacklist of unwanted inferencesY
that she would like to keep private. In the above example,
X would be the suitable ringing behavior, andY the user’s
current location. We focus on strategies to derive message
M under specified utility and privacy constraints (how much
informationM gives aboutX andY ).

Research on privacy has recently attracted a lot of attention.
Mechanisms following differential privacy have been used to
protect membership information within a database by ade-
quately perturbing the aggregate query responses [1]. Differ-
entially private aggregation of data from multiple distributed
sources is presented in [2]. In [3], the authors introduce
the notion of partial information hiding and increase the
uncertainty of individual values by perturbing them. The effect
of added noise can often be eliminated by averaging and
other sophisticated filtering techniques [2], [4]. A prototype
implementation of a privacy-aware framework on an Android
smartphone is provided in [5]. Inspired by the work in [5],
we consider an information-theoretic analysis of the unwanted
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Fig. 1: The provider senses an RVD and wants to send a messageM to the
recipient, so that recipient can estimateX = f(D) from M without being
able to estimateY = g(D). If f , g and the distribution ofD are fixed, the
recipient can only choose the conditional distributionp(M |D).

inference problem. Elementary tools from information theory
can be used to effectively capture how much the recipient
can infer from the shared data. Our investigation follows the
approaches developed in [6], [7] for databases and [8] for time-
series data. We differ from the above works in several key
components. Our scheme does not depend on the existence of
a multi-user database, the identity of the provider is typically
known, and what the provider wishes to keep private is a
function of the data and not the raw data itself.

Specifically, our contributions are as follows. In Section II,
we present our system model, introduce formal definitions of
our utility and privacy parameters, and derive a theoretical
bound on the region described by the achievable values of
these parameters. In Section III, we outline our strategy for
achieving maximum privacy under perfect utility, followedby
Section IV in which we derive conditions for achieving max-
imum utility under perfect privacy. In Section V, we consider
sharing data over multiple time slots to better approach the
theoretical bound. We conclude in Section VI.

II. PRELIMINARIES

In our model (see Fig.1), a data provider senses a discrete
RV D. The provider cooperates with the recipient by sharing
information about the whitelist, as specified by the RVX =
f(D) (e.g.,X can be mute, ring, or vibrate). The provider also
wants to keep the blacklist, specified byY = g(D) (e.g.,Y
can be work, home, theater, etc.) private. We considerX and
Y to be deterministic functions ofD. In this work, we focus
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on provider strategies for generating messageM from D,
represented by the distributionp(M |D), such that the desired
tradeoff between utility (M gives a lot of information about
X) and privacy (M provides no information aboutY ) can be
achieved.

Formally, for a given choice of distributionp(M |D) of
messageM knowing dataD, we define a utility parameter
δU (M) and a privacy parameterδP (M) as:

δU (M)
∆
=

H(X |M)

H(X)
, δP (M)

∆
=

I(M ;Y )

H(Y )
.

(1)

When there is no ambiguity, we omit the argumentM of δU
and δP . Depending on the application, various other utility
metrics could be useful, for instance Hamming or Euclidean
distortions [6]. Most of our analysis directly translates under
any distortion metric for utility: for reasons of simplicity we
choose to present it here under the equivocation metricδU .

These parameters expressed in terms of elementary
information-theoretic notions conveniently capture the tradeoff
between utility and privacy. The smallerδU (M) is, the more
useful M is in determiningX , and the smallerδP (M) is,
the more privateM is aboutY . We refer toδU = 0 as the
perfect utility case (in whichH(X |M) = 0 and therefore
X can be perfectly inferred fromM ) and toδP = 0 as the
perfect privacycase (in whichI(M ;Y ) = 0 and therefore
Y is independent fromM ). In general, it is not possible to
achieve perfect utility and perfect privacy at the same time.
In the following, we provide a lower bound on the achievable
(δU , δP ) pairs:

Theorem 1. Let D, X and Y be fixed. For any choice of
conditional distributionp(M |D), the following lower bound
holds:

δU (M)H(X) + δP (M)H(Y ) ≥ I(X ;Y ). (2)

For a given choice ofM , equality in (2) holds if and only if
H(X |M,Y ) = I(M ;Y |X) = 0.

Proof: We prove that for any three RVsM , X and Y ,
H(X |M) + I(M ;Y ) ≥ I(X ;Y ), where δU (M)H(X) =
H(X |M) andδP (M)H(Y ) = I(M ;Y ):
I(M ;Y ) +H(X |M)− I(X ;Y )

= H(M) +H(Y )−H(M,Y ) +H(X |M)− I(X ;Y )

= H(M,X) +H(X,Y )−H(M,Y )−H(X)

= H(M) +H(X |M) +H(X) +H(Y |X)

−H(M) +H(Y |M)−H(X)

= H(X |M) +H(Y |X)−H(Y |M)

= H(X |M) + I(M ;Y |X) +H(Y |M,X)−H(Y |M)

= H(X |M,Y ) + I(M ;Y |X) ≥ 0.

(3)

BecauseH(X |M,Y ) andI(M ;Y |X) are both non-negative,
equality holds if and only if they are both zero.

From Theorem 1, we deduce that it is possible to achieve
perfect utility and perfect privacy at the same time only if
I(X ;Y ) = 0 (in fact, one can observe that reciprocally, if
I(X ;Y ) = 0 then we can always achieve perfect utility and
perfect privacy simultaneously, e.g. by transmittingM = X).

A more intriguing question is, whenI(X ;Y ) > 0, what are

the achievable pairs(δU , δP )? In this case, we consider thatD,
X andY are fixed, and we want to find RVsM that achieve
good tradeoffs betweenδU andδP . We denote the respective
alphabets ofD, X , Y and M by D, X , Y and M. While
the former three alphabets are fixed by the problem setup, we
have the choice of the alphabetM of M .

To answer the posed question, we first define themaximum
privacy under perfect utilitymax

perfU
P andmaximum utility under

perfect privacymax
perfP

U points by

max
perfU

P = (0, δ∗P ) whereδ∗P
∆
= min

M :
δU (M)=0

δP (M),

max
perfP

U = (δ∗U , 0) whereδ∗U
∆
= min

M :
δP (M)=0

δU (M).
(4)

In the next sections, we consider strategies to achieve the
pointsmax

perfU
P andmax

perfP
U.

III. M AXIMIZING PRIVACY UNDER PERFECTUTILITY

Using the fact thatX is a deterministic function ofD, we
provide a simple strategy to achievemax

perfU
P, and show that the

strategy reaches the bound from Theorem 1.

Lemma 1. For fixedD, X andY , sharingM = X achieves
max
perfU

P and δ∗P = I(X;Y )
H(Y ) .

Proof: Follows directly from the definition ofδU (M) and
δP (M) in (1) and the bound in Theorem 1.

SharingM = X is not useful when the computation of
X by the recipient is the only reason the provider agrees to
release data. However, it is a valid strategy when the provider
has additional incentive to share data, or whenX is only an
intermediate variable which requires further processing by the
recipient.

IV. M AXIMIZING UTILITY UNDER PERFECTPRIVACY

As shown in Section III, achievingmax
perfU

P is straightforward

as it does not depend onY . However, achievingmax
perfP

U is

considerably more involved as it depends on bothX and
Y . This section aims at providing necessary conditions on
p(D,M) for M to achieve pointmax

perfP
U. Combining these

conditions greatly restricts the space over which distributions
p(D,M) may achievemax

perfP
U; in fact, it allows us to express

the maximization of utility under perfect privacy as a linear
programming problem.

A. Necessary Conditions onp(D,M) for Maximum Utility
under Perfect Privacy

We provide three conditions. The first one is a necessary
and sufficient condition for perfect privacy (with no constraint
on utility). It is a simple consequence of our definition of
perfect privacy, but we state it formally as it is convenientfor
our analysis. The remaining two are necessary conditions for
maximum utility.
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Condition 1. For all m ∈ M and y ∈ Y,
∑

d∈g−1(y)

p(d,m) = p(m)p(y). (5)

Lemma 2. RV M achieves perfect privacy if and only ifM
meets Condition 1.

Proof: By definition of perfect privacy,I(M ;Y ) = 0 and
for all m ∈ M andy ∈ Y we havep(m, y) = p(m)p(y). The
statement follows by noting that

p(m, y) =
∑

d∈g−1(y)

p(d,m). (6)

We now try to maximize utility when Condition 1 is
satisfied. Suppose that for everym ∈ M there is a unique
x ∈ X such thatp(m,x) > 0. Then,M achieves perfect
utility. This observation leads to the intuition that utility is
increased when each valuem ∈ M jointly occurs only with
a limited number of different values ofx ∈ X . Therefore,
starting from a given RVM that achieves perfect privacy,
we might be able to improve utility by performing local
rearrangements of the joint distributionp(D,M). The goal is
to reduce the number of different values ofX that can jointly
occur with each value ofM while preserving perfect privacy.
We identify local patterns in the joint distributionp(D,M)
that can be manipulated for a guaranteed increase in utilityat
no cost in terms of privacy: if for a givenM , p(D,M) shows
one of these patterns, thenM does not achievemax

perfP
U.

Condition 2. Givend1 6= d2 in D andm1 6= m2 in M such
that f(d1) 6= f(d2) and g(d1) = g(d2), there exists a pair
(i, j) ∈ {1, 2}2 such thatp(di,mj) = 0.

Lemma 3. If M achievesmax
perfP

U, thenM meets Condition 2.

Proof: Suppose thatM achievesmax
perfP

U but does not meet

Condition 2. Then, there existd1, d2, m1 andm2 so that all of
the p(di,mj) terms,(i, j) ∈ {1, 2}2, are non-zero. We show
that this leads to a contradiction by building an RVMα which
also achieves perfect privacy, but with better utility thanM .

For a real numberα in a well-chosen range, we define the
RV Mα by its joint distributionpα(D,M):

pα(d,m) =



























p(d,m) + α if (d = d1 ∧m = m1)

or (d = d2 ∧m = m2),

p(d,m)− α if (d = d1 ∧m = m2)

or (d = d2 ∧m = m1),

p(d,m) otherwise.

(7)

Notice that the joint distributionpα(D,Mα) is a locally per-
turbed version ofp(D,M). We now consider howH(X |Mα)
varies withα. Becausepα(d,m) must remain between0 and
1, α can only vary in some line segment[αmin, αmax]. Note
that the constraints that the probabilities must remain non-
negative are sufficient to find the bounds: taking for instance
p(d1,m1) + α > 1 would imply that p(d1,m2) − α < 0.
Therefore,αmin = −min(p(d1,m1), p(d2,m2)) andαmax =
min(p(d2,m1), p(d1,m2)).

We now prove thatH(X |Mα) is a concave function ofα
and therefore reaches its minimum forα = αmin or α = αmax

(so that one of thepα(di,mj) = 0). We use the following
notation shortcuts

pij
∆
= p(mj , xi) =

∑

d∈f−1(xi)

p(d,mj), (8)

pijα
∆
= pα(mj , xi)=

∑

d∈f−1(xi)

pα(d,mj), (9)

wherexi = f(di), and decomposeH(X |Mα) into a term that
depends onα and a constant. We use the fact that for allm
and all x, pα(m) = p(m) and pα(x) = p(x). After some
lengthy derivations we obtain
H(X |Mα) =

− p11α log p11α − p12α log p12α − p21α log p21α − p22α log p22α + C.
(10)

Differentiating twice, we get
∂2

∂α2
H(X |Mα) = −

1

p11α
−

1

p12α
−

1

p21α
−

1

p22α
< 0. (11)

Thus, there exists anMα such thatδU (Mα) < δU (M).
Also, pα(m, y) =

∑

d∈g−1(y) pα(d,m), thus for m 6∈
{m1,m2} or for y 6= g(d1) = g(d2), we havepα(m, y) =
p(m, y) because for these values ofd and m, pα(d,m) =
p(d,m). Form ∈ {m1,m2} andy = g(d1) = g(d2), we have

pα(m, y) =
∑

d∈g−1(y)

pα(d,m) =
∑

d∈g−1(y)

p(d,m)+α−α = p(m, y).

(12)
Therefore,δP (Mα) = δP (M) = 0, which together with
δU (Mα) < δU (M) contradicts the fact thatM achieves
max
perfP

U.

Condition 3. For all m0 ∈ M and d1, d2 ∈ D such that
g(d1) = g(d2),

d1 6= d2 ⇒ p(d1,m0) = 0 ∨ p(d2,m0) = 0. (13)

Lemma 4. If M achievesmax
perfP

U, thenM meets Condition 3.

Proof: Suppose thatM achievesmax
perfP

U but does not

meet Condition 3. Then, there existm0, d1 andd2 such that
g(d1) = g(d2) and bothp(d1,m0) > 0 and p(d2,m0) > 0.
Now consider the RVM ′ on alphabetM′ = M ∪ {m′

0}
(where m′

0 6∈ M is a new symbol), obtained by splitting
symbolm0 into m0 andm′

0. Formally,

p′(d,m) =

{

p(d,m) if m 6∈ {m0,m
′
0},

p(d,m)/2 if m ∈ {m0,m
′
0}.

(14)

Let us first notice thatδU (M ′) = δU (M):

H(X)δU (M
′) =

∑

m∈M′

p′(m)H(X |M ′ = m)

=
∑

m∈M\{m0}

p(m)H(X |M = m) + 2
p(m0)

2
H(X |M = m0)

= H(X)δU (M). (15)

Similarly, δP (M ′) = δP (M) = 0. As M ′ does not satisfy
Condition 2 (form0, m′

0, d1 andd2), by Lemma 3,M ′ does
not achievemax

perfP
U, and so neither doesM .

Under the assumption that Condition 1 is satisfied, Fig. 2
illustrates for a simple synthetic example ofD, X andY how
better utility can be obtained once Conditions 2 and 3 are met.
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D X Y 1 2 3 4

1 1 1

2 2 1

3 3 1

4 1 2

5 2 2

6 1 3

7 3 3

Ma

D X Y 1 2 2′ 3 4

1 1 1

2 2 1

3 3 1

4 1 2

5 2 2

6 1 3

7 3 3

Mb

D X Y 1 2 2′ 3 4

1 1 1

2 2 1

3 3 1

4 1 2

5 2 2

6 1 3

7 3 3

Mc

(a) While Condition 2 is met, Condition 3 is
not: we split columnm = 2 into 2 and2′, and
obtainMb that violates Condition 2.

(b) While Condition 3 is now met, Condition 2
is not. We rearrange the highlighted probabili-
ties and gain utility without losing privacy.

(c) Lastly, Conditions 1–3 are met, the table is
a candidate for maximum utility under perfect
privacy (and does in fact achieve it).

Fig. 2: Illustration of the impact of Conditions 2 and 3 on thejoint distributionsp(D,M), whenM already meets Condition 1. Each◦ represents a measure
of 1

49
. Starting fromMa (left panel) which does not meet Condition 3, we reachMb (center panel) withδU (Mb) = δU (Ma) andδP (Mb) = δP (Ma) = 0,

whereMb does not respect Condition 2. FromMb, we reachMc (right panel) which still hasδP (Mc) = 0, and hasδU (Mc) < δU (Mb).

D X Y 1 2 3 4 5 6 7 8 9 10 11 12

1 1 1 a1 a2 a3 a4 0 0 0 0 0 0 0 0

2 2 1 0 0 0 0 a5 a6 a7 a8 0 0 0 0

3 3 1 0 0 0 0 0 0 0 0 a9 a10 a11 a12

4 1 2 b1 b2 0 0 b5 b6 0 0 b9 b10 0 0

5 2 2 0 0 b3 b4 0 0 b7 b8 0 0 b11 b12

6 1 3 c1 0 c3 0 c5 0 c7 0 c9 0 c11 0

7 3 3 0 c2 0 c4 0 c6 0 c8 0 c10 0 c12

M

Fig. 3: General structure of the joint distribution forM satisfying Condi-
tions 1–3 (for an example choice ofX andY ). For eachm ∈ {1, . . . , 12},
am

3
= bm

2
= cm

2
. The table is thus entirely determined by the choice of the

valuesp(m) = am + bm + cm for eachm ∈ {1, . . . , 12}.

B. Linear Programming Approach for Maximum Utility under
Perfect Privacy

We now use Conditions 1–3 to formulate the maximization
of utility under perfect privacy as a LP problem to compute
p(D,M) so thatM achievesmax

perfP
U.

We start by defining thesupport ofD given M = m as
the setS(m) = {d ∈ D : p(d,m) > 0}. Condition 3 can be
written in terms ofS as follows:

∀m ∈ M, ∀y ∈ Y, |S(m) ∩ g−1(y)| = 1. (16)

Without loss of generality, we only consider thoseM ’s
for which no distinctm1 and m2 have the same support.
Otherwise,m1 andm2 can be merged into a single symbol
with no effect onδU and δP (for the same reason for which
we could splitm0 into two symbols in the proof of Lemma 4).

We denote byS the set of all possible supportsS so that
(16) is met. For the same instance ofD, X and Y as in
Fig. 2, we show in Fig. 3 the structure of the candidate
joint distributions formax

perfP
U. Notice that for any givenm,

Condition 1 requires thatam

3 = bm
2 = cm

2 , which in turn
determines the conditional distribution ofY given M = m.
Also, |S| =

∏

y∈Y

∣

∣g−1(y)
∣

∣ = 3 × 2 × 2 = 12. For M
achieving Conditions 1–3, we can therefore characterize the
joint distribution p(D,M) with only |S| values (the vector

(p(m))m∈M with M = {1, . . . , |S|}). This greatly reduces
the dimensionality of the space of the candidate joint distri-
butions formax

perfP
U.

We therefore formulate achievingmax
perfP

U as the problem of

finding (p(m))m∈M ∈ [0, 1]|M| which minimizes

H(X |M) =
∑

m∈M

p(m)H(X |M = m), (17)

(whereM is chosen so that{S(m) : m ∈ M} = S with each
support represented exactly once), under the constraints that
for eachd ∈ D,

∑

m:d∈S(m)

p(d,m) = p(d), (18)

which can be written in terms of thep(m):
∑

m:d∈S(m)

p(m)Pr(Y = g(d)) = p(d). (19)

The above LP has an average-case complexity which is

polynomial in |S|, where|S| is upper bounded by
(

|D|
|Y|

)|Y|

.

V. OBTAINING BETTER PARAMETERS BY USING TIME

While max
perfU

P always achieves the bound from Theorem 1

as discussed in Section III,max
perfP

U in general does not. We

try to reduce the gap betweenmax
perfP

U and the theoretical

bound by simultaneously using multiple time-slots. Rather
than considering three RVsD, X and Y , we consider that
they are part of three i.i.d. random processes(Dt), (Xt) and
(Yt). If we send a messageMt independently at every time
slot t, the analysis remains the same as before. Hoping to
reach better privacy and utility, we decompose the processes
into groups ofT time slots and treat each of these groups as
a whole.

For an RVM (T ), we define the utility and privacy param-
eters corresponding to a group ofT time slots:

δ
(T )
U (M (T ))

∆
=

H(XT
1 |M

(T ))

H(XT
1 )

, δ
(T )
P (M (T ))

∆
=

I(M (T );Y T
1 )

H(Y T
1 )

.

(20)
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0

0.274

0 0.274 0.5 δ
(T )
U

δ
(T )
P

D X Y 1 2

1 1 1 1/3 0

2 2 1 0 1/3

3 2 2 0 1/3

M

max
perfU

P for T = 1

?

D X Y 1 2

1 1 1 1/3 0

2 2 1 0 1/3

3 2 2 1/6 1/6

M

max
perfP

U for T = 1Provably
Unachievable (∀T )

Provably
Achievable

Bound from Theorem 1
Points forT = 1
Points forT = 2
Points forT = 3

Fig. 4: Points(δ(T )
U

, δ
(T )
P

) for max
perfU

P, max
perfP

U and tradeoffs between the

two, for T from 1 to 3, on an example with|D| = 3. While max
perfU

P does not

change with an increase inT , max
perfP

U is shifted leftwards, and better tradeoff

points are achieved forT = 2, 3 than forT = 1.

While M (T ) plays the same role asM did before, we
include a superscript(T ), to indicate thatM spansT time
slots. We may omit this superscript whenT = 1. The
following lemma provides a way of obtaining RVsM (T ) using
an RVM designed for a single time slot.

Lemma 5. Let f and g be two (deterministic) functions, and
(Dt), (Xt) and (Yt) be three i.i.d. random processes so that
for each t, Xt = f(Dt) and Yt = g(Dt). Then, for any RV
M given by the joint distributionp(D,M), consider the i.i.d.
random vectorMT

1 over MT given by its joint distribution
with DT

1 ,

p(T )(dT1 ,m
T
1 ) =

T
∏

t=1

p(dt,mt). (21)

Here,MT
1 conserves the utility and privacy parameters ofM :

δ
(T )
U (MT

1 ) = δU (M), δ
(T )
P (MT

1 ) = δP (M). (22)

Proof: The proof follows from elementary information-
theoretic properties of i.i.d. processes.

Lemma 5 ensures that the optimal(δ
(T )
U , δ

(T )
P ) pairs are no

worse than the optimal(δU , δP ) pairs. It is in fact possible
to build RVs for T time slots that achieve results strictly
better than the best that can be obtained for a single time
slot. For instance, in Fig. 4, we consider a small example
with D = {1, 2, 3}, f(1) = f(2) = g(1) = 1, f(3) =
g(2) = g(3) = 2. We plot the bound from Theorem 1,
which delimits a provably unachievable region. For eachT ∈
{1, 2, 3}, we also plot the pointsmax

perfU
P andmax

perfP
U obtained

using respectively Sections III and IV, and use a heuristic
algorithm to achieve and plot tradeoffs between utility and
privacy by combining the joint distributions ofmax

perfU
P and

max
perfP

U. Combining these two distributions requires computing

“compatibility scores” between elements of the alphabets for
the extreme points and using these scores to carefully construct
a common alphabet. The detailed description of this procedure
is left for an extended version of the paper. For eachT ,

these tradeoffs form a curve that delimits a region of provably
achievable pairs(δU , δP ). The maximum utility that can be
reached under perfect privacy using a single time slot is
δ
(1)∗
U = 0.5. However, with two time slots, it can be reduced

to δ
(2)∗
U = 0.468, and toδ(3)∗U = 0.452 for three time slots. It

appears challenging to establish whether the points in the area
in between the theoretical bound and the heuristically obtained
tradeoffs are achievable or not (except for the points(δ

(T )
U , 0)

with δ
(T )
U < δ

(T )∗
U , which are unachievable by definition).

The bound from Theorem 1 remains the same regardless
of T because of the assumption that the processes are i.i.d.:
for any T , δ(T )∗

U ≥ I(X;Y )
H(X) = 0.274. An interesting question

is to determine whetherδ(T )∗
U approaches this bound when

T goes to infinity. The time complexity of the method from
Section IV-B prohibits the computation ofmax

perfP
U for T > 3,

even for simple examples like the one shown in Fig. 4.

VI. CONCLUSION

In this work, we took the first step towards creating a
framework for protecting data against unwanted inferences.
We define utility-privacy parameters based on information-
theoretic notions, which allow us to effectively capture how
much the recipient can infer from the shared data. We identify
bounds on these parameters, and provide constructive mech-
anisms for achieving these bounds. There are multiple facets
to the problem which we intend to study, e.g., the effect of
side channel information and correlation between the shared
data samples over time. Tools from coding theory may also
prove valuable in designing schemes in order to achieve better
tradeoff points, especially in the case of multiple time slots.

ACKNOWLEDGEMENT

This research is based upon work supported in part by the U.S.ARL,
U.K. Ministry of defense under Agreement Number W911NF-06-3-0001, by
the NSF under awards CNS-0910706 and CNS-1213140, by the Office of the
Director of National Intelligence (ODNI), Intelligence Advanced Research
Projects Activity (IARPA), via US Navy (USN) SPAWAR SystemsCenter
Pacific (SSCPac). Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily
reflect the views of the NSF, ODNI, IARPA, USN, SSCPac, or represent the
official policies of the U.S. ARL, the U.S. Government, the U.K. Ministry
of Defense or the U.K. Government. The U.S. and U.K. Governments are
authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation hereon.

REFERENCES

[1] C. Dwork, “Differential privacy: A survey of results,” in Theory and
Applications of Models of Computation, TAMC, 2008.

[2] V. Rastogi and S. Nath, “Differentially private aggregation of distributed
time-series with transformation and encryption,” SIGMOD,2010.

[3] S. Papadimitriou, F. Li, G. Kollios, and P. S. Yu, “Time series compress-
ibility and privacy,” VLDB, 2007.

[4] Y.-S. Moon, H.-S. Kim, S.-P. Kim, and E. Bertino, “Publishing time-series
data under preservation of privacy and distance orders,” DEXA, 2010.

[5] S. Chakraborty, K. R. Raghavan, M. P. Johnson, and M. B. Srivastava, “A
framework for context-aware privacy of sensor data on mobile systems,”
HotMobile, 2013.

[6] L. Sankar, S. Rajagopalan, and H. Poor, “Utility-privacy tradeoffs in
databases: An information-theoretic approach,”Information Forensics and
Security, IEEE Transactions on, vol. 8, no. 6, pp. 838–852, 2013.

[7] M. Bezzi, “An information theoretic approach for privacy metrics,”
Transactions on Data Privacy, vol. 3, pp. 199–215, Dec. 2010.

[8] L. Sankar, S. Rajagopalan, S. Mohajer, and H. Poor, “Smart meter privacy:
A theoretical framework,”Smart Grid, IEEE Transactions on, vol. 4,
no. 2, pp. 837–846, 2013.


